天地中社区

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
楼主: 我行我素

zt业余无线电爱好者实用手册

[复制链接]
 楼主| 发表于 2007-4-11 22:22:50 | 显示全部楼层
天线与传播(下)
  
电波的传播
当电波从天线辐射出来,在地球空间中传播,根据不同的传播性质有3种可能的途径(见图8),一是直射波,电波像光线一样直接传播到接收天线。电波通过这种途径传播所受的衰减很小,传播很稳定,但由于地球本身是个球体,所以,这种方式传播距离有限,收发天线的高度越高,传输距离就越远(见图9)。电波的频率越高,越倾向于以直射波传播。二是地面波,电波贴着地表面传播。地面波传播只受地面电性能和地形的影响,因此,地面波传播最稳定可靠,受太阳、昼夜和四季等的变化影响很小。电波的频率越低,越有沿地表面传播的倾向,当频率升高时,地面对电波的衰减会很大,传输距离很短,特别是在起伏大的地形中。三是反射波,电波经过地面、地物和天空的电离层等反射后传播到接收天线。对于业余无线电来说,最重要的是经过电离层反射的短波传输。由于电离层在离地面80~500km的高空中,电波经过反射能传播到很远的距离,例如经过电离层一次反射可达4000km,两次反射就能达8000km,所以,通过电离层的反射可实现全球通讯(如图10)。电离层对不同频率电波的作用也不一样,频率低的电波会被电离层吸收掉,频率很高的电波则会穿透电离层而射向太空,有去无回。只有2MHz到30MHz的短波频率有可能被电离层反射回地球,达到超视距的远距离通讯。电离层是由太阳放射的高能辐射(主要是紫外线)使地球上空的空气电离而形成的,因此电离层受太阳、昼夜和四季等的变化影响很大,尤其是太阳黑子活跃周期的影响。经过电离层反射的短波传播的特点是通讯距离远,可用简单的设备和天线,以很小的功率进行全球的通讯(见图11)。缺点是信号传播不稳定,有衰落现象,受太阳、昼夜和四季等的变化影响很大,信道的干扰噪音很大。正因为短波通讯受到诸多自然因素的影响而变得如此的变幻莫测,才吸引大批业余无线电爱好者去不断经历神奇的电波之旅,探索其中的奥秘。
业余无线电波段的传播规律
业余无线电频段从低频到高频被划分成许多不连续的波段,常用的有HF频段、VHF频段和UHF频段,频率再高的微波频段只用于业余卫星通讯和微波通讯实验。下面简要的介绍一下常用的业余无线电波段的传播规律。
l.160m频段(1.80~2.00MHz)
这是业余无线电台允许使用的最低频段。这个波段的传播规律跟中波很相似,白天主要是靠地面波进行近距离的通讯,晚上可以通过电离层D层反射进行远距离通讯,最佳的通讯时机是通讯双方都处于日出日落的交界时间。在冬天的傍晚或黎明时分,是用160m频段进行远距离通讯的时候。由于这个频段频率比较低,需要架设庞大的天线,电离层对它的衰减也比较大,需要较大的功率才能达到远距离的通讯,因此,操作的人较少,并且多用CW进行联络。
2.80m频段(3.50~3.90MHz)
这个频段的传播规律与160m频段相似,主要是以F层和E层混合传播为主。夏天和白天由于D层和E层的电子密度高,这个频段以下的电波会被吸收掉而不能经电离层反射,白天只能进行100~200km距离的通讯。同时,在夏天经常发生雷电,使频段上有很大的噪音,弱小的信号不能被听到。在冬季的傍晚或黎明时分,进行远距离通讯的效果比160m频段好,通联到远距离电台的机会也大。这个波段的天线也是比较庞大,但比起160m频段的天线已经缩小了许多,况且现在也有许多缩短型的产品天线,使这个波段架设天线的难度减低。一般简易架设多用水平半波偶极天线,缩短型的产品无线多为垂直接地型的天线,有大的架设场地和充足的资金就可以在几十米的铁塔上架设起庞大的八木定向天线!效果好的天线是既要架得高,又要长度够。
3.40m频段(7.00~7.10MHz)
这是个短波初学者的入门频段之一,也是最拥挤热闹的频段。这个频段操作范围比较窄,但几乎全年全天大多可以进行QSO,白天,可以进行几百公里的通联,在傍晚或黎明时分是开通远距离通讯的好机会,这时各国的许多电台在狭窄的频段内互相拥挤,加上本身频段的严重杂音,汇集成一幅繁华的市井图。在深夜时分,常常是洲际通讯的好时机,因此,常在这个波段狩猎珍稀电台的HAM有个“夜猫子”的美称。国内较多HAM在7.050~7.070MHz之间用LB进行通联,许多省还在某些频点上设立固定的本地网络。这个频率的天线无论是简单的偶极天线、垂直接地天线或者复杂的八木旋转定向天线都能享受其中的乐趣,甚至有人把缩短型鞭状天线夹在汽车上,在上下班途中进行穿洲过省的通联。
4.20m频段(14.00~14.350MHz)
这个频段是著名的DX(远距离通讯)频段,原因是这个频段主要是靠电离层F层进行全球的通讯。这个波段的特点是传播比较稳定,太阳的活动和季节的变化对传播影响比较小,电离层开通的时间比较长。在冬季传播稍差,传播主要开通东南亚地区,春秋两季开始开通全球传播,在夏季,即使在白天也有DX通讯的可能。大多数国际比赛和无线电远征活动,可在这个频段操作,同时大多数使用这个频段的电台也都是以进行DX通讯为目的的,因此,这个波段是狩猎珍稀电台最佳频段。在国内比较有名的是14.180MHz频点的中国老火腿网,几十年如一日每天早上东南亚的华人老火腿们在此频率聚会,称为早茶相聚。另一个是14.330MHz频点的中国无线电运动协会(CRSA)网络,每星期二上午十点开始,由BY1PK主控,通报各地的活动情况和CRSA近期的工作安排等。这个频段除了常用的CW和UB通讯模式外,还可以进行RTTY和SSTY通讯。这个频段的天线已经可以做得比较小巧,常常采用八木定向天线,天线的增益也比较高,也有很多是采用多波段共用天线进行操作。
5.15m频段(21.00~21.450MHz)
这是另外一个短波初学者的入门频段,也是一个比较好的DX频段。这个频段主要是靠电离层F2层反射,太阳活动、昼夜和四季等的变化对这个频段的影响较大,当太阳活动比较活跃的期间,这个波段是DX联络的主要波段,但在太阳活动低潮期,则进行远距离通讯比较困难。在春秋两季,早上可以开通美洲,下午开通大洋洲和东南亚,晚上则开通欧洲和非洲。大多数国际比赛和无线电远征活动,可在这个频段操作。这个频段的背景杂音比较小,加上天线尺寸比较小,用小功率就可以进行DX通讯,因此,即使在城市中公寓楼房等窄小的天线架设条件也可以满足要求,甚至在阳台或窗户伸出天线也可以进行DX通讯。同时,也有很多HAM利用这个频段作移动运用,假日在野外架设起简易的天线,享受大自然之余,还可以得到DX QSO的乐趣。在这个频段里21.400MHz是中国业余无线电爱好者的呼叫频率,有许多中国的HAM在此守听,也有许多外国电台专门到这个频率呼叫中国的电台。这个频率固定运用作DX的多采用高增益八木旋转定向天线。因为波长较短,天线比较容易自制,因此,初学者使用自制天线进行通联的也不少。
6.10m频段(28.00~29.70MHz)
这是短波段的最高频段,也是短波段中频带最宽的频段,这个波段的传播特性介于HF和VHF之间,主要特点是受太阳活动的影响大,有突发E层传播现象,一旦开通传播电离层衰减小,频率杂音较小,天线增益容易做高。在电离层没有反射的时候,它只能作视距的传播。当传播开通时,却可以用很小的功率进行出乎意料的远距离通讯。这个频段的另一个特点是在HF频段中唯一可以使用FM的频段,FM信号一旦大于接收门限,就有非常好的抗干扰性,由于有限幅电路的作用,信号的信噪比和音质都很好,FM收发信机也容易制作调整简单,制作成功率很高。因此非常适合初学者入门自制。在29.600MHz频率是个国际FM呼叫频率,许多国内外的10m频段FM爱好者用FM进行通联,在传播开通的时候,非常热闹。这个频率多是使用高增益定向天线和各种垂直天线,采用自制天线的HAM也不小。
7.6m频段(50.00~54.00MHz)
这是著名的初学者入门频段,也被称为“魔术波段”。主要是这个波段的传播特性介于HF和VHF之间,在太阳活动的活跃期,会产生突发E电离层传播现象,电波通过突发E电离层的异常传播,可以用很小的功率进行全球的DX通讯。是DX爱好者进行猎奇的波段。在这个波段的前端,业余无线电爱好者组织在全世界各个地方设立了信标台,这些信标台24小时不停地轮流发射信标信号,我们只要通过接收这些信标台的信标信号,就可以实时地了解波段的开通情况,也有爱好者通过收听记录这些信标台的信号情况去探索突发E电离层发生和传播的神奇规律。在这个频段比较有名的呼叫频点是50.110MHz,许多6m频段DX猎人在此埋伏,一旦传播开通,纷纷拼抢开通的短暂时机进行通联。这个频段的波长较短,适合进行天线和电路的实验。现在更有这个波段的手持式对讲机的产品,使便携式移动运用成为可能。曾听说有HAM用3W小手机在自己的家门口就可以跟日本的电台进行联络,是多么神奇的经历啊。
8.2m频段(144.00~148.00MHz)
这是典型的VHF频段,是一个非常活跃的本地移动通讯频段。对这个频段的信号电离层基本不产生反射,电波以直射波视距传播为主,传输中遇到有大楼房或山体等,会产生反射波,因此,只能作为近距离的通讯,同时由于这个开展业余卫星通讯和月面反射通讯实验,进行远距离通讯。这个频段的天线是业余无线电爱好者制作率最高的,有各种高增益的定向和全向天线,有车载移动鞭状天线和小巧的手持机天线等等。
9.0.7m 频段(430.00~440.00MHz)
属于UHF频段,直射波传播比2m频段更甚,反射和折射现象比2m频段更明显,但同时空气的衰减比2m频段大,更不适合于作远距离通讯。在使用较长电缆时,开始要考虑电缆对信号产生的衰减。由于这个频段频率高,杂音小,兼各生产商竞相推出多款小巧功能齐全频段的天线可以做得比较小巧,可以设置在汽车上,因此,这个频段移动通讯非常活跃。为了解决通讯距离近的问题,很多业余无线电爱好者把转发台架设在高处,借助转发台差转信号,可大大增加通讯范围,爱好者只要用很小的功率和简陋的天线,就能和远地的电台QSO。在夏季等天气不稳定的季节,常会产生叫“大气波导”的异常传播现象 (见图12),电波在大气三层温度突变层间来回折射,衰减很小地传到远方。还有流星余迹反射和对流层散射等现象,也会使2m频段的电波超视距的传播。这个波段的电波可以穿越电离层,的车载电台和小手机,近年来也逐渐取代2m频段,而成为主要的本地移动通讯频段,再结合架设高性能的转发台,可以在当地构成一个良好的通讯网。这个频段可以开展流星余迹反射、对流层散射、月面反射和业余卫星通讯等通讯实验,尤其是近年来相继发射了几颗高轨道大功率业余无线电卫星,使通讯时间延长,跟踪容易,天线要求简单,设备要求降低,使利用卫星通讯变得容易,因而参加者众。为了适应移动通讯,这个频段的天线大多为垂直极化天线为主,许多厂家推出各种144/430MHz共用的双频段天线,方便业余无线电爱好者在两个频段之间通讯。
10.0.23m频段(1260.00~1300.00MHz)
这个频段基本属于微波频段,主要是直射波传播的形式,但是业余无线电爱好者却是利用这个频段进行流星余迹反射和对流层散射等的超距离通讯实验,另外,也有通过业余通讯卫星进行卫星通讯实验的。由于这个频段频率比较高,因此空气中的水汽和雨滴等会对电波产生衰减,同时,传输电缆和电缆插接头等的损耗也会很大。幸好由于波长短,容易用天线阵或抛物面天线等做成高增益的天线。由于这个频段的频带很宽,所以除了进行常规的通讯以外,还能进行业余数字通讯和业余电视通讯实验。 30.jpg
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:24:09 | 显示全部楼层
水平偶极天线的架设方法

  天线有千百种唯独水平偶极天线(DIPOLE ANTENNA),简单经济,效率又高。
  水平偶极天线标准情况下的阻抗是73欧姆,图一是标准的设立方法,天线的元件方向成一直线,两边的支柱可利用大楼或其它杆状物如竹竿代替也可以。当您的无线电设备操作的电波频率低时,若要架设一标准的水平偶极天线,就必须在较宽广的平面上来架设。这是都市最大的限制。但是,不一定要作成标准水平偶极天线,也可以驾成倒V型(如图二),如此一来面积长度就可以节省很多,同时也只需用到一根中心支柱。
  水平偶极天线角度与阻抗的关系
  水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。
  因此,如果用50欧姆的同轴电缆线作为天线的传输线时,150度的角度是最理想的。图三是水平偶极天线的角度离地高度与阻抗的比较。
  从这个图表可知道;当水平偶极天线的角度一样,而天线的地上高度不一样时,也会有可能产生阻抗不同的情形。例如:您的水平偶极天线张开角度为120度时,天线的离地高度是0.56波长、0.73波长、1.15波长时(21MHz的情况是7.95米、10.37米,16.33米),这时候天线的阻抗却降到了50欧姆了。
  要想架设一组高效率的水平偶极天线,就必须注意上列事项。除此之外。下列项目也请特别注意:天线元件尽量避免靠近电华配线和电力线。
  天线主体四周如果离一般电线太近的话,不但会影响改变天线的阻抗,而且会产生电波干扰。一个波长以上的距离最理想,两者无法兼顾时,也请尽量避免天线元件和电线平行,而且利用一高一低或相互交叉之方式架设。在遇有钢筋水泥大厦、钢铁、和其它金属类的情况下亦有相同之影响,所以也请特别注意。
  平衡与不平衡转换器(BALUN)的使用
  水平偶极天线本身是平衡式(BALANCE)但同轴电缆线准却是不平衡式(UNBALANCE),粤迎接不平衡式的电缆线列平衡式的天线时,就需要使用到平衡与不平衡转换器,但是一般市售的转换器价格QI却比一组自制的简甲偶极天线价格高,在这种情况下,不用转换器也是可以的,只要上述事项都能够注意到,实际使用起来也没因问题。
  水平偶极天线在调整时,可以先将天线元件的两端顶留30公分左右垂直悬着,再一边注意看驻波比表,一边一次剪掉3~5公分左右长度,一直到驻波比最低为止,这是最简单的调整方法之一。
  架设倒V型水平偶极天线时,最重要的是要注意人身的安全间题。因为当无线电机发射时,水平偶极天线本身会产生高周波电流,而共两端的高周波电压最强。所以,若要架设此天线,请尽量架设在人身触摸不到的地方,这样才比较安全,或者请标示危险注意标志。
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:24:26 | 显示全部楼层
完全天线手册

天线是FM DX的耳朵,微弱的电波从天线经过馈线进入接收机,才能让我们听到远方电台的声音。一个接收系统的好坏,天线占了一半。我们希望天线能有高的增益,把微弱的信号变得响亮,我们希望天线能有一定的选择能力,把传呼台干扰和本地强台挡在外面,我们希望天馈系统尽量减小损耗,把每一微伏的信号都送到接收机的前端。
对于大多数使用便携式收音机来收听FM DX的人说,他们的天线也许只是收音机上的拉杆天线,这样的天线虽然简单方便,但是对于FM DX来说,无论如何是不够的,尽管拜电离层的恩赐,这样的天线系统也不是没有可能接收到DX信号。
我将介绍一些常见而且容易自制的天线,这些天线能够用我们日常生活中容易得到的材料制作。我会逐一制作这些天线,将制作的过程拍成照片,并给出尽可能详细的尺寸数据。尽管我在制作过程中会动用天线分析仪甚至是综合测试仪等设备,但是我将告诉读者不使用这些昂贵仪器的调试方法。至少,完全按照我的材料、尺寸总不会错。
电波
在讲天线之前,不能不先提一提电波。
我们制作天线的目的是为了捕捉电波,因此,在考虑天线的问题之前,绝对有必要先研究一下电波的问题。
FM广播波段,频率上是从87.5MHz到108MHz,对应的波长是3.4米到2.7米,一般称做3米波段,是VHF(Very High Frequency)的一段。这个波段以下,54MHz到87.5MHz是电视广播波段,以上,108MHz到136MHz是航空通讯波段。VHF波段的电波传播,主要有三种途径:
直接波
这是指从发射天线到接收天线之间,不经过任何发射,直接到达,电波就象一束光一样,所以有人称它为视线传播。视线传播这个名字也表明了这种传播方式能够传播的距离不远。这有两个原因,首先是电波从发射点出发,其能量是以幂级数递减的,而接收机要能良好地解调出广播,需要一定的信号强度。所以太远的地方,信号太弱,不足以解调。如果只是这个原因,那么拼命提高发射功率或增加接收天线的增益,也许就可以扩大收听的范围了。但是,还有一个重要的问题是,地球是圆的,在地球上任何一点发出的电波,按直线前进的方向,最终将离开地球射向天空。主要是由于第二个原因,一般地讲,地面上一个发射台发出的直线波,只能传播到70km远处地面上的接收处。如果双方的高度增加,那么这个距离还可以增加,但总是有限的。所以,70km,是本地收听的极限,实际上,由于山脉、丘陵、房屋的阻挡、反射,这个距离还要大打折扣,一般可以估计的距离是35km。
电离层发射波
这是指电波通过电离层的发射达到接收方。这里面的名堂很多。电离层本身是有多个层次的,支持短波(1.8MHz到30MHz)反射的电离层是F1和F2层。F1和F2并不是甘心反射所有的无线电波,它们能反射的最高频率是有限的,超过这个频率的电波完全得不到反射,而是穿过电离层射向太空。如果没有这个特性,那么通讯卫星就不可能存在了,通讯卫星就是在电离层外工作的。这个最高频率叫作MUF(Max Usable Frequency)。 MUF与很多因素有关,主要是和太阳黑子活跃程度以及季节有关。太阳黑子活跃,MUF就高,天气热,MUF也高。MUF最高能高到多少呢?一般在太阳黑子活跃期的夏天,MUF在20MHz到 40MHz之间,很少超过50MHz。在低的时候甚至会低到10MHz以下。但是在太阳黑子异常活跃的时候,MUF也有可能偶然达到100MHz。这时候,就有可能通过F层发射收到DX FM了。但是这不是FM DX的主要形式,FM DX主要是通过另外一个电离层E层。本来E层的出现是破坏F层,所以我们不妨记F层为Friend层,E层为Enemy层。但是Es层的出现,却会形成一个短期内密度极高的反射层。反射层的密度高,意味着能更好地反射电波。所以Es层开通的时候,DX电台的信号会异常地强。在6米和10米业余波段工作的业余电台都知道, Es层开通的时候,很小的功率,甚至5W,也有可能做DX联络。Es的开通,主要是提供了 800km以内电波的传播路径。由于信号很强,其实很多时候并不需要很好的设备就可以接收,需要的是耐心和运气。除了这两种反射,FM DX还有可能通过对流层反射和流星余迹到达你的接收机。
地波和大气波导
本来来说,理论上VHF是不存在地波的。但是无数的实践表明,VHF 也存在着某种程度的地波传播。所以我们能稳定地接收200km左右电台的信号。江苏和安徽两省的业余电台,每年国庆的时候都进行全省VHF移动通讯实验,也证明了VHF电波可以在200km左右的距离得到传播。大气波导是另外一种可能传播VHF电波的手段,不过人们研究得还不够多。
既然存在着这些可能,那么如何知道我收到的信号是以什么方式来的呢?一般来说,如果收到的信号来自70km以内的电台,基本上可以认为是直接波;如果是200km以内,而且信号稳定(不一定强),那么大概是地波;如果是800km以内,信号很强,但是极不稳定,而且偶尔才出现,多半是Es层传播;如果距离更远,信号很弱,大概是F层或其他形式的电离层传播了。
知道这些有什么用呢?用处在于帮助我们选择对天线的要求。比如,F层的传播有一个特点是越距,大约500km以内的电台是不可能通过F层的传播来的,这个距离内的电台信号只能以Es层来。就象在杭州想要接收台湾的FM电台信号,只能PNP(Plug and pray),等 Es层,那么天线就要考虑适合Es层的特点。
还有一个很重要的因素是极化方式,这是很容易被很多爱好者忽略的问题。电波的极化方式有三种:水平极化、垂直极化和圆极化。不管理论上怎么计算,简单的判断方法,就是看振子的方向,振子是水平放的就是水平极化,垂直的就是垂直极化,圆极化不用在 FM广播,可以不管。极化方式之所以重要,是因为要求发射方与接收方的极化方式必须一致,才能有好的接收效果。我国广播的极化方式是水平极化,所以,接收天线也应水平架设。如果极化方式不一致,会有10dB到20dB的损失。可是,经过电离层的反射过来的电波,早就被反射得七荤八素、颠三倒四,说不定是什么极化方式了。所以,接收DX信号,其实垂直极化也不错,附带的一个好处,就是可以削弱本地电台的影响。
天线的特性
共振
任何天线都谐振在一定的频率上,我们要接收哪个频率的信号,就希望天线谐振在那个频率上。天线谐振是对天线最基本的要求,要不然,就没那么多讲究了,随便扔根线出去不也是天线嘛。
天线的谐振问题涉及到的主要数据是波长及其四分之一。计算波长的公式很简单,300/f。其中f的单位是MHz,而得到的结果的单位是米。1/4波长是称作基本振子,如偶极天线是一对基本振子,垂直天线是一根基本振子。
不过天线中的振子的长度并不正好是1/4波长,因为电波在导线中行进的速度与在真空中的不同,一般都要短一些,所以有一个缩短因子。这个因子取决于材料。
带宽
这也是一个重要但容易被忽略的问题。天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。这个范围就是带宽。
我们当然希望一付天线的带宽能覆盖一定的范围,最好是我们所收听的整个FM广播波段。要不然换个台还要换天线或者调天线也太麻烦了。
天线的带宽和天线的型式、结构、材料都有关系。一般来说,振子所用管、线越粗,带宽越宽;天线增益越高,带宽越窄。
阻抗
天线可以看做是一个谐振回路。一个谐振回路当然有其阻抗。我们对阻抗的要求就是匹配:和天线相连的电路必须有与天线一样的阻抗。和天线相连的是馈线,馈线的阻抗是确定的,所以我们希望天线的阻抗和馈线一样。一般生产的馈线,主要是300欧姆、75欧姆和50欧姆三种阻抗,国外过去还有450欧姆和600欧姆阻抗的馈线。
基本偶极天线的阻抗是75欧姆左右,V型偶极天线是50欧姆左右,基本垂直天线阻抗 50欧姆。其他天线一般阻抗都不是50或75欧姆,那么在把它们与馈线连接之前,需要有一定的手段来做阻抗变换。
平衡
对称的天线是平衡的,如偶极天线、八木天线,而同轴电缆是不平衡的,把这两者连接起来,就需要解决平衡不平衡转换的问题。
增益
天线是无源器件,但是天线是可以有增益的。这个增益当然是相对增益,是相对于基本偶极天线而言的。FM DX所用的天线,当然希望增益越高越好。不过别忘了,增益高往往伴随着带宽窄。
方向性
不是所有的天线都有方向性的。便携式收音机上的拉杆天线就没有方向性。偶极天线有弱的方向性,八木等定向天线可以得到较好的方向性。好的方向性意外着能够集中收集所需方向的电波,还有一个重要的能力就是能部分地减弱本地电台信号的影响。
但是定向天线并不是什么情况下都好。当没有目标而等待的时候,定向天线就有可能使你错过天线背面的信号。所以比较合理的方式,是用一个垂直天线和一付定向天线配合使用,用垂直天线等待,听到信号后,再用定向天线转过去对准了听。
仰角
天线的仰角是指电波的仰角,而并不是天线振子本身机械上的仰角。仰角反映了天线接收哪个高度角来的电波最强。对于F层传播,我们希望仰角低,可以传播地远,对于 Es层,电波主要是从高处来,我们希望仰角高。
仰角的高低取决于天线型式和架设高度。一般来说,垂直天线具有低仰角,其他天线的仰角随架设高度变化。
架设高度
天线有一个架设高度。这个高度实际上是两个高度,一个高度我们考虑它的水平面高度,这个高度对于本地信号有些用,对于DX其实用处不大。第二个常常被忽略的高度是地面高度,是指天线到电气地面的高度。比如架设在钢筋水泥房顶的天线,虽然房子高有20米,但是天线距房顶只有1米,那么这付天线的高度只是1米。
天线的高度对不同的天线有不同的影响,一般会影响天线的阻抗和仰角。通常我们认为天线的地面高度应在0.4个波长以上,才比较不受地面的影响。
驻波比
最后介绍这个最不被中国的爱好者熟悉的特征。
驻波比反映了天馈系统的匹配情况。它是以天线作为发射天线时发射出去和反射回来的能量的比来衡量天线性能的。驻波比是由天馈系统的阻抗决定的。天线的阻抗与馈线的阻抗与接收机的阻抗一致,驻波比就小。驻波比高的天馈系统,信号在馈线中的损失很大。
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:24:39 | 显示全部楼层
如何使用驻波比表

若以功率的观点来看 驻波比可以表示为:

SWR = (√Po + √Pr)/(√Po - √Pr)
Po:进入天线系统的功率 

Pr:从天线系统反射回来的功率

经过运算 SWR 与 Pr/Po (反射功率百分比)的关系如下
Pr/Po = [(SWR-1)/(SWR+1)]^2

驻波比表基本上就是功率表 它可以量测输入功率及反射功率 但根据上式 不管输入功率为何 反射功率一定和输入功率成一定的比例 也就是说 对同一驻波比 不管输入功率为何 只要是在量输入功率时利用可变电阻调整驱动表头的电流使指针达到满刻度 那麽你量测反射功率时 指针一定是指在同一个位置 把这些相关位置标出来 我们的功率表上就多了一排刻度 叫做"驻波比" 而您的功率表马上摇身一变成为"驻波比表"了 

说穿了 驻波比表就是功率表 在量测功率时它预设了几组功率(如5W,20W,200W) 使输入功率恰好是这个位准时(5W,20W,200W)指针会达到满刻度 当你拨在CAL位置时就是量输入功率 只不过你可以调整指针位置 当你拨在SWR位置时就是量反射功率 只不过您这时候看的是SWR的刻度 

以DIAMOND系列的驻波比表而言 它有一个 Calibration 旋钮及三个选择开关 Power Range Func FWD/REF SWITCH 用法如下

量输入功率 1.将POWER RANGE 拨到 200W FUNC拨到PWR FWD/REF拨到FWD 
      2.按下无线电机的发射键
      3.适度选择 POWER RANGE 以精确读出功率 

量反射功率 1.将POWER RANGE 拨到 200W FUNC拨到PWR FWD/REF拨到REF 
      2.按下无线电机的发射键 
      3.适度选择 POWER RANGE 以精确读出功率 

量驻波比 1.将 FUNC 拨到CAL 位置 CALIBRATION 旋钮反时针方向旋转到底 
     2.按下无线电机的发射键 调整 CALIBRATION 旋钮使指针达到满刻度 
     3.将 FUNC 拨到 SWR 位置 由表头的 SWR 刻度读出驻波比的读值  使用驻波比表量测天线的驻波比时要尽量将驻波比表*近天线端 因为传输线的传输损耗会使得所量出来的驻波比数值较小 变成"快乐驻波比" 例如 原本天线的驻波比为 1.92 (反射功率百分比为 10%) 现在加上一段 cable 衰减量为 3dB 假设无线电机的发射功率为 10W 则经由 CABLE 传到天线的输入端时只剩下 5W 然後反射10% 即 0.5W 0.5W 经由传输线送回来只剩下 0.25W 所以驻波比量到的是输入 10W
反射 0.25W 反射功率百分比为 2.5% 即 SWR=1.03 量起来真是快乐的不得了 

此外 目前大部份的驻波比表都是利用感应的方式将信号感应到驻波比表内的量测电路 所以在量测时可以一边发射一边切换驻波比表上的开关 这并不会损坏无线电机 如果小心一点 不要让指针瞬间打到底 驻波比表要坏掉也蛮难的  最後提醒一点 天线的好坏不能单看驻波比 现在大家如此迷信驻波比的原因很简单 因为驻波比表到处都买得到 我的意思是说 不要因为天线驻波比很低就觉得一切OK而沾沾自喜 多研究天线的其它特性才是真正的乐趣 

本文由BV3FG撰写
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:26:21 | 显示全部楼层
天线与通信

天线一直是业余无线电活动中最热门的话题,也是无线电爱好者最常自制的器材之一。天线的好坏直接影响无线电通讯系统的收发效果和通讯距离。业余无线电台具有 发射功率小、收发共用同一天线和天线架设条件简陋等特点,更加要求合理地选用适当的天线以达到更好的通讯效果。
天线,是电波的换能器件,用以发射和接收电波。它的工作有点像音响里的扬声器和话筒,它把在电路里流动的高频电流通过电磁感应转换成高频电磁波向外辐射,高频电流流过任何导体时,导体内部的电子随着高频电流振动,在导体外面空间会感应激发电磁波。天线也把在空间的电磁波通过感应转换成高频电流,因此,可以说天线是收发互逆的。任何天线在接收时的所有特性及参数都可以由该天线在发射状态时的已知特性及参数决定,反之亦然。简单地说,若一条天线的接收效果好,则该天线的发射效果也好。
电子和磁子振动产生交变电场或磁场,交变的电场或磁场互相转换,形成电磁波以光速向外辐射。理论上使电子和磁子作高频振动均能产生同样的电磁波,但由于电路里本身就是流动着高频电流,因此我们常用的是电天线——即使电子作高频振动来产生电磁波。为了使天线的辐射提高,必须使流过天线导体的高频电流尽量的强,我们知道当电路处于谐振状态时,电路上的电流最大,因此,若使天线处于谐振状态,则天线的辐射最强。由传输线理论可知,当导体长度为1/4波长的整数倍时,该导体在该波长的 频率上呈谐振特性,导体长度为1/4波长为串联谐振特性,导体长度为1/2波长为并联谐振特性。由于1/2波长的振子比1/4波长的振子长,所以1/2波长振子的辐射比1/4波长振子强,但振子超过1/2波长虽然辐射继续加强,但由于超过1/2波长的部分的辐射是反相位而对辐射有抵消的作用,因此总的辐射效果反而被打折扣,所以,通常的天线都采用1/4波长或1/2波长的振子长度单位,这种由两根长度相同的导体构成的天线就叫偶极天线(见图1)。这是最简单、最基本的天线,其他的天线都可以等效成偶极天线的变形和叠加。
电波在真空中传播的速度是约每秒30万公里的光速,但在不同的介质中有不同的传播速度,波长也不同,因而,在不同的介质中,天线的振子长度可以缩小,例如在空气中的缩短系数是0.98。有的介质的缩短系数很大,可以使天线大大缩小,但通常介质的电波损耗比真空和空气大,天线的效率并不高。同样的天线,工作频率越低,波长越长,则天线的振子也越长,天线也显得越庞大。
电磁波在传播时其电场或磁场的方向是有固定的规律的,我们叫电波的极化,是以电场分量的方向命名。电波的电场和地面垂直,称为垂直极 化波;电波的电场与地面平行,称为水平极化波。电波的极化是由发射天线决定的,因此天线按其辐射电波的极化分为水平极化和垂直极化天线,根据天线收发互逆,接收时天线也必须采用与发射同种极化的天线才能有最好的接收效果。

天线的重要指标
1.辐射效率
输入到天线系统的功率,在天线系统中会由于热损耗、介质损耗等消耗掉一部分,而不能全部变为电磁波辐射。天线的辐射效率就是辐射功率与输入功率之比,它与天线的损耗电阻、辐射电阻、工作波长等有关。为了提高天线的辐射效率,就要尽量增大辐射电阻和减小损耗电阻。同时,发射频率越低,天线的辐射效率也越低,换句话说就是信号的频率越低,越难以辐射。这也就是为什么高频电路特别需要注意屏蔽和隔离的原因。
2.特性阻抗
把一定频率的高频功率信号馈入到天线的输入端,天线就会呈现出一定的电阻和电抗,称为天线的特性阻抗。天线的特性阻抗与天线的 形状、尺寸、工作波长、信号的馈入点、周围环境的影响等多种因素有关。大多数情况下,特性阻抗可以通过理论计算或由实验确定,但用普通的万用表是不能测量出来的。若天线系统的特性阻抗与传输系统的特性阻抗相同,就称为阻抗匹配,这时天线系统的辐射电阻和损耗电阻正好吸收了传输系统馈送的全部功率。而如果天线系统与传输系统的特性阻抗有差异,系统就不匹配,造成电波从天线系统反射回传输系统,这部分反射的电波信号由于来回反射被损耗掉,没有被天线系统辐射出去,无形中使实际馈送到天线系统的高频功率信号减少,造成传输效率下降,如图2所示。由于一般收发信机和高频同轴电缆的特性阻抗均为50Ω,所以,通常应努力使天线的特性阻抗也为50Ω,只有这样,才能使整个收发系统的传输效率最高。
3.天线增益
把天线的辐射向某个方向集中,在这个方向上天线所产生的场强将会增大,也就是说天线具有增益。通常表示天线的增益采用对数比值dB表示,所用的比较基准不同,得出的天线增益值也有很大的不同,一般是以无方向天线的辐射场强为基准。理论上可以把天线的全部辐射都集中到远处的一点上,但实际上要实现它需要极其庞大复杂的天线系统,而这时天线内部的相互影响和产生的损耗会抵消掉天线产生的增益,天线的增益增加到一定的程度就很难提高,最多只能有几十分贝(dB)。有一个比较形象地表现天线辐射情况的是天线辐射方向 图(见图3),天线方向图可以反映天线分别在水平方向和垂直方向上达到相同场强的距离。
总的来说,一个好的天线系统,首先是天线系统本身的辐射效率要高,损耗要小,其次是要能与传输系统匹配,使整个收发系统的传输效率达到最高,再次就是能尽量地使所辐射的能量集中到所需要的地方,抑制不必要的辐射。

业余无线电常用的天线形式
业余无线电中较常用的天线形式有水平半波偶极天线(Dipole)、垂直接地天线 (Vertical)、八木天线(Yagi)等。
水平半波天线采用两条1/4波长的导线作振子,水平于地面架设起来,在中间馈入高频信号,天线发射和接收的是水平极化波,其辐射是水平8字型方向图形(见图4)。水平半波偶极天线有两种架设方法,一种是用支架拉起天线振子的两端的“水平架设”法,另一种是用支架在中间把馈电端撑起,天线振子以夹角120°往下拉开的“倒V型架设”法。这种架设方法的优点是只用一根支撑架,而且天线容易与50Ω电缆匹配。
垂直极化天线是天线被架设在地面上,由于地面具有一定的导电性,会对天线的辐射产生影响,其作用的结果相当于在地面的下面对称位置安放一个“镜像”天线一样。对于垂直接地天线(Vertical),其辐射角和天线的长度、天线架设离地面的高度和地面导电率等因素有关,一般HF的垂直天线都是在非常接近地面的地方架设,因此可重点考虑辐射角和天线的长度的关系。通过计算可知,由于“镜像天线”的作用(见图5),垂直天线辐射沿着地面方向辐射最大,辐射角度越贴近水平面,通过电离层反射所能到达的距离就越远。在天线长度为1/2波长时沿着地面方向辐射最大,当天线长度继续增加时,虽然水平方向辐射角继续减少,但同时在垂直方向(天空方向)有副瓣辐射出现。有的垂直天线为了减少副瓣辐射,采取改变天线振子电流分布的方法。单根垂直接地天线在水平方向的辐射是无方向性的,也就是对于四面八方的信号有着相同的收发效果。垂直接地天线具有结构简单、架设容易、占地方小、辐射角低等优点,但同时垂直接地天线也有增益低、无方向性和接收噪音大等固有的缺点。通常在工作频率低,要求全向通讯,架设条件比较苛刻时使用。
比较著名的方向性天线是八木天线,一般的单频段的八木天线(见图6),经典设计是以1/4波长振子为有源辐射单元(实际振子长度还应乘上相应的缩短系数),在距有源辐射单元后面1/4波长的地方放置一根振子称为反射器,在距有源辐射单元前面1/4波长的地方放置一根振子称为引向器,通过调整反射器和引向器振子的长度,使反射器振子感应的电流比有源辐射振子的电流相位超前π/2,引向器振子的电流比有源辐射振子的电流相位落后π/2。这样从远区得到的电波 情况是:在反射器方向,因反射器和有源振子辐射的电波相位差为180°而相互抵消,因而没有信号。在引向器方向,则相位相同而得到加强(理想情况下是加倍)。根据传输线理论,只要反射器和引向器的长度分别取得较有源振子长一点和短一点(或加入可调节的电抗器),则它们的阻抗分别呈电感性和电容性,便能获得所需的相位关系。在实际应用中,为了进一步增加引向器方向的电场强度,使天线的方向性更好,常采用加入多个引向器的方法。由于加入了多个无源振子,各振子间互相影响,使设计和调整的难度加大。因各振子间互相影响,要使各振子的相位保持如前面的差π/2,则反射器和引向器与有源振子间的距离就不一定等于1/4波长,反射器与有源振子间的距离可取0.l~0.25波长,引向器与有源振子间的距离可取0.l~0.34波长,实际距离根据实验而定。当然也可以用改变各振子长度的方法,使各振子的相位符合要求。当天线的振子数目增大后,会引起有源振子特性阻抗的减少,因此在V/UHF频段的天线里是用折合振子作有源振子的方法提高阻抗,但在HF中这样做,天线振子的体积和重量都会很大,因而多采用阻抗变换的方法实现。
从前面的分析可知,只要使反射器和有源振子辐射的电波相位差为180°,就能使天线有方向性,因此,就有一种把反射器也做成有源的并使反射器和辐射器的相位差180°的天线,它是由呼号是HB9CV的HAM在1965年发明的,所以叫HB9CV天线(见图6),这种天线反射器和辐射器的距离仅1/8波长,前辐射振子长约为0.47波长,后辐射振子为约0.48波长。这样两单元的增益就相当于五单元的八木天线,而且这种天线的显著特点是体积小,前后比大,增益高。为了更进一步提高这种天线的增益,在前辐射器前仿照八木天线再加上若干的引向振子,但同样就使天线的设计和计算显得非常复杂,以前多由实验取得数据,近年来计算机仿真技术的发展,出现了天线的仿真设计软件,极大地方便自己设计和制作各种天线。
在业余无线电通信中,业余频段被分割成整数倍的若干频段,为业余制作多频段的天线创造了有利的条件。多波段天线的原理是基于天线在不同的操作频率中,有不同的谐振长度,操作频率高时天线振子的谐振长度短,而在操作频率低时天线振子的谐振长度长。当操作频率低时共用频率高的那部分振子,在操作频率高时切断加长部分的振子,使之只有短的振子工作,这样,同一条天线就可工作在两个操作频率。因此把对应不同操作频率的不同长度的振子用开关接起来,使在不同的操作频率时对应长度的振子接入工作,就可以使一条天线工作在多个频段。实际使用上,我们大多采用所谓的“陷波器”来代替开关自动地根据不同的操作频率调整振子长度。“陷波器” 实质是一个谐振于操作频率的并联谐振电路,在天线工作于操作频率时,并联谐振电路呈现高阻抗,可以看作开路,振子断开,当天线输入频率低于“陷波器”谐振频率时,“陷波器” 相当于在两振子串联的电感线圈,相反,相当于串联电容,而这两种状态都起到缩短实际天线振子长度的作用(见图7)。实际应用时,当天线被设计成太多的工作频段时,天线被分成很多段,同时也要接入很多的“陷波器”,使得天线的各部分产生相互的影响,使调整非常困难,同时也易受架设环境的影响,使天线的实际效果不佳。
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:26:42 | 显示全部楼层
业余电台通信中的字母解释法

字母 标准解释法 地名解释法 其他解释法
A Alfa America Able
B Bravo Boston Baker
C Charlie Canada China
D Delta Denmark David
E Echo England Easy
F Foxtrot Florida Francis
G Golf Germany Guatemala
H Hotel Honolulu Henry
I India Italy Indian
J Juliet Japan
K Kilo Kentucky King
L Lima London Lucy
M Mike Mexico Mary
N November Norway Nancy
O Osacr Ontaria Ocean
P Papa Paraguay Peter
Q Quebec Quebec Queen
R Romeo Rotterdam Radio
S Sierra Santiago Sugar
T Tango Tokyo Texas
U Uniform Uruguay United
V Victor Virginia Victoria
W Whisky Washington Winnie
X X-ray
Y Yankee Yokohama Yesterday
Z Zulu Zanzibal Zebra
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:27:06 | 显示全部楼层
天线的增益是从哪里来的?
天线的增益指标体系中增益指标dbi的基准值(0dbi)简单的说是指点辐射源全向均匀辐射的特性值,可以这样理解,理想的具有全向辐射特征的天线的增益为0(dbi)。全向天线镇子形式的不同,只不过是在不同条件下为得到理想辐射特性而做的努力而已,也就是说具有全向均匀辐射特性的天线的增益不可能大于0dbi。

看看另一个天线增益指标dbd,0dbd=2.15dbi,也就说一副具有0dbd增益的天线具有2.15dbi的增益!那么天线的增益是从那里来的呢?我们来看看天线增益指标dbd的基准定义:理想水平偶极天线在最大辐射方向的增益值为0dbd。

根据水平偶极天线的方向特性不难看出,其增益来源于全向性能的丧失,或简单称之为辐射能量的集中。垂直全向高增益天线的增益来源于那里呢?来源于垂直方向的辐射能量向水平方向的集中,也就是说具有增益的全向垂直(架设形式)天线严格的说应称之为水平方向全向辐射天线。而具有高增益特性的八木天线的高指向性更是体现了能量集中对天线增益的贡献。

天线性能的提高源于两个方面的努力,一是提高天线的有效辐射性能,另一方面是尽量使得天线的辐射能量向通联对象方向集中。可以简单且确定的讲,天线的增益(相对于0dbi)来源于辐射能量的集中。
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:27:18 | 显示全部楼层
谈谈天线的业余制作

天线可作为发射机的终端、接收机的前端,它是一个谐振装置,但又区别于一般的参数式谐振回路,因为它可以在许多频率上都产生谐振。天线在收发信电路中所占的位置非常重要,天线质量的好坏,决定了收发信距离的远近及收发信效果的好坏。业余条件下,制作一付高质量的甚高频与超高频天线,一直是广大业余无线电爱好者追求的目标。下面笔者将常见甚高频与超高频天线的型式及制作方法介绍如下。
  在动手制作天线前,必须首先知道天线的基本公式,即:波长(米)=速度/频率=300/频率(MHz)。由于人们使用的绝大多数天线是以半波长的导体为基础的,故1/2波长(米)150/频率(MHz)。根据此公式即可直接用它得出天线的长度,用这个尺寸制造的发射(或接收)天线可以在预期的频率上发生谐振。另外,我们还应该记住传输线和天线的以下特点:(1)长度短于四分之一波长的短路线呈电感性;(2)长度短于四分之一波长的开路线呈电容性;(3)如果一条任意长度的导线的终端电阻等于它的特性阻抗,那么它就是一个纯电阻性的负载,因而不会把能量反馈回信号源;(4)长度略短于四分之一波长倍数的天线呈电容性;(5)长度略长于四分之一波长倍数的天线呈电感性;(6)电感性负载可用加入电容的方法来匹配,电容性负载可用加入电感的方法来匹配。
  一、接地平面鞭状天线
  此类天线是由一根垂直受激的四分之一波长振子与一个人工地面(三根或四根水平放置的,而且在电气上是接地的辐射棒)组成。其中辐射棒应至少有四分之一波长,如果它们是完全水平放置的,则馈电点阻抗大约是34欧姆,如接地辐射棒向下倾斜45度,馈电点阻抗则会提高到50欧姆,这是与标准同轴线进行匹配的理想阻抗值。即使是让辐射棒发生倾斜,它的失配状态仍略小于1
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:27:40 | 显示全部楼层
亚音的解释

最常用的亚音就是CTCSS(Continuous Tone Coded Squelch System),直接翻译就是连续音频编码静噪系统,Motorola称为PL,是属于模拟亚音,频率从67.0Hz、69.3Hz、一直到 250.3Hz,共39个亚音点(或50个点)。发射时把这个低频的不可听到的信号(因此叫亚音)连续的叠加到频率上发射,对方只有接到这样的同样频率才接收之,用于抗干扰,或者不听不是给自己的信号。

亚音分发射亚音和接收亚音两种。一般,为了能上中继,都是使用发射亚音,这样才能打开中继。而中继自己采用的就是“接收亚音”,没有亚音的信号就被排斥了。中继下来的信号有的不带亚音但也有带亚音的。

同样,自己接收时,为了能排斥自己不需要听的信号,也可以同样加上接收亚音。这样,两个电台(或几个电台)之间也可以使用约定的亚音,用于排除外来干扰信号。

尽管说是亚音,但事实上是可以听到的,尤其是把亚音设置在高限(250Hz附近),或者接收机的低频频响比较好的时候。因此,我们设置亚音的时候,都尽量设置的低一些,以免不必要的干扰。

另外有一种亚音是DCS(Digital Coded Squelch),属于数字亚音,Motorola称为DPL,有104个亚音点(DPL少一些),更先进,是在语音前和发射结束前利用数字编码的形式发射。这种亚音只能同时发射和接收(即不能设置只发射而不接收的)。

误区:发射亚音时,接收方只有设置到亚音接收才能接收。
错!事实上正相反。发射亚音时,接收方设置到“非亚音接收状态”一定能接收,设置到“亚音接收状态”时,必须亚音类型一致、同时亚音码一致才能接收。

例如对于VX-1R和VX-2R,“T”表示CTCSS发射亚音、“T SQ”表示CTCSS发射和接收亚音、“DCS”表示DCS发射和接收亚音。
回复

使用道具 举报

 楼主| 发表于 2007-4-11 22:28:01 | 显示全部楼层
火腿器材葵花宝典(完整版 一)
BD2RH

困扰新入门业余无线电爱好者的一个主要问题是器材。

有两个途径解决这个问题,首先是自制,自制当然是最值得提倡、也是最符合火腿对技术的探求精神的。除了本刊今年初刊登的十米活动器材文章外,网上类似这方面的资料多如牛毛,感兴趣的朋友可以看看。例如www.try-net.or.jp/~ja6hic ,这是个日本火腿的网页,里面有许多机器的制作实例。CRSA的会刊也有一些。

第二个途径就是选购成品机。目前在世界火腿器材的生产基本被几家日本的公司如KENWOOD(建伍),YAESU(八重洲),ICOM(井上)垄断,由于产量相对于家用电器的产量来说很小,而且其中的技术含量也远比一般的彩色电视机音响等家用电器要高得多,因此价格也比较贵,象ICOM IC-706MKIIG这样的机型,价格将近一万元,有些高档机则更贵。由于我国业余无线电活动的规模还处于起始阶段,市场还不足以引起国内市场通信机产业的兴趣,还没有到出现价廉物美的国产业余无线电设备的时间。目前对于多数火腿而言,购买全新的进口设备还不太现实。因此二手的火腿器材具有无可比拟的性价比,成为绝大多数火腿的选择。这里我想重点谈谈二手机的选购。

(一)二手短波设备:

如果您是个经济不太宽裕的刚入门的收听者,我建议你买如下的设备,这些都是国产退役专业接收机。

(1)退役专业接收机:是目前最容易搞到的。

a,晶体管接收机:

139A/B::频率范围1。5-18MHz,三个波段,三连调谐,体积不大。 139B是139A的发展型,用了许多的硅管,效果比139A要好,有2个陶瓷滤波器/其中一个是窄带的,灵敏度也很好,噪声也很低。建议把它的原配耳机换掉,用另一种带软胶皮耳罩且里面是黄色震动膜盖的军用耳机代换,音量音质都有很大的提高。它的阻抗是600欧姆,内部结构类似于老式的舌簧喇叭,不可用一般的32欧姆的立体声耳机代用,否则易损坏机器。这种耳机还可以代换其他的国产军用接收机的原配耳机,效果也不错,但不包括XSD-12(56)的,它的耳机阻抗是2200欧姆。139A/139B它们的价位一般在100元以下。

239/339:频率范围:1。5-30MHz,六个波段,239主要是用锗管设计的。三连调谐,二次变频。339是239的发展型,噪声更低,也是二次变频,但是四连调谐,有多个陶瓷滤波器,主要用硅管设计的。239的价位和339差不多,但性能比339差一些。它们的价位一般在200-350元;
77,77-A,70/70-2/,70-3:几种外观,电路类似,性能十分优秀的机器。频率范围1。5-31。5MHz,15个波段,它们曾经是我国在70年代初生产的最好的晶体管接收机,是短波一级收信机。 七连(77和77-A)或八连(70系列)调谐,高放调谐回路十分考究,比目前几乎所有的包括数万元的高档进口机还要讲究。它们的刻度盘是精密光学投影度盘,它们还有多个机械和陶瓷滤波器。如果你买进口短波设备,和70/77等具有同样的接收性能的价格可能过万。当然它们的外观和使用的方便性没法和现在进口机哪怕是最低档的进口机比,毕竟是三十多年前的设备,比许多朋友的年龄还要大。这些机器中感觉77-A的声音最好,而且它的刻度比较均匀。70系列由于多了一个高放调谐回路 ,不用担心镜像抑制比变差,所以它的波段三仍为一次变频,覆盖增大到3MHz,因此波段三的刻度盘精度方面来不如77。当然仅限于波段三。77,77-A的所有波段频率覆盖都是2MHz。实际这几种机器的优劣差距极不明显。它们的一般价位在350-500元,

b,电子管接收机:
虽然目前不太多见了,但如果您没有时代的成见,这些机器的使用效果还是相当不错的。
222/222-1:频率范围:1。5-30MHz,电子管接收机,外观非常漂亮,一次变频,四连调谐,二级高放,带晶体滤波器,多个可选带宽。工艺精湛,声音非常好。虽是和239/339是一个档次的,但效果比它们特别是239要好得多,但机器耗电量很高,体积和重量也很大。

XSD-12或称56:1。5-24MHz,二次变频电子管接收机,是我国五十年代仿造苏联的KROT(КРОТ,克劳特)电子管接收机。有类似于70/77的精密光学度盘,接收效果非常好,是我国七十年代以前的接收机王,效果比后来的70/77系列还要好,体积和重量(主机不含电源就重八十多公斤)以及耗电量都很大,使用不便。目前已经不太多见了。它也是短波一级收信机。
7512:电子管接收机,高端也到24MHz,也是仿苏产品,俗称小KROT,一级高放,性能一般,高端镜像抑制比较差。目前也不太多见。
WS430:频率范围0。535MHz-32MHz,二级高放,原机大概是仿美国二战时RCA的CR88接收机。感觉比222略差,但比7512要好。目前也不太多见,原来邮电航海航空等部门用得较多。
139:七灯收信机,不要和139A/B混淆。因它使用的是直热式电子管,对灯丝的电源要求很高,处理不好会有交流声。频率范围:1。5-12MHz,目前已不多见。以前用于和大八一电子管发射机的配套。
需要说明的是所有的军用收信机,即使是139A,其效果也要比一般的收音机好许多,包括广告做的震天响的几款热门收音机。不要指望用一台百十块钱的收音机加一个BFO(拍频振荡器)就可以满意的收SB单边带和CW等幅报 ,虽可以收到,但会累死你的。它们的制造工艺/频率稳定度/灵敏度/选择性/镜象抑制比/动态范围/抗干扰能力和哪怕是最低档的139A相比也是相差太远。

(2)短波收发设备:
如果您是个有发射权限并持有合法电台执照的火腿,您可以选购的设备如下:

a,国产短波设备:

如果您是个在校的学生或经济比较紧张,您可以选用129(XD-D2), XDD-A, XDD-801,它们都是晶控式,10W或15W/25W单边带收发信机。除少数XD-D2外,它们的频率覆盖都在6MHz以下,需要改造才能工作在40m(7MHz业余波段)。一般价位在200元左右。

130(XD-D2B), XD-D3/D6/D8, XDD-915/925等: 915/925是仿造YAESU FT-70的,但不是短波全段,上端仅到10MHz。功率大都在10-25W上下,许多也需要改造才能工作在40m波段。D8/915/925无需改造就可以在40m工作,还有一些XD-D2B也不用改就可以用到40m波段(其实那些需要改造的是130,不是D2B,它们外形一样)。一般价位250-450元,D8/915/925要稍贵。

XD-D5/BWT-133/XDB4-84/XDD-950: 这些机器除D5外基本是全段(1。5- 30MHz)的机器。D5高端到23。999MHz。它其实是仿ICOM的M700TY,只是工艺略差,但性能很好。功率为150W,和其他机器相比价格要稍贵一些。XDD-950的信道部分是仿YAESU FT-80C的,控制部分是国内设计的,输出功率为50W,但工艺不太好,故障率也较高。以前厂家拒绝提供电路图,致使目前维修困难。BWT-133/ XDB4-84两者均为背负式电台,15W输出功率,早期生产的BWT-133缺了一个边带,后期生产的上下边带都有,有关的详细性能可以在陕西烽火无线电厂的网页上查到。一般价位在千元以下。

708/A211:频率范围28。5-36MHz,1。2W,后者是电子管设备,FM(调频)工作方式,可用于业余十米通讯, 背负式电台。一般的价位在150-250元

884:功率0。72W,FM电台,频率范围45-50MHz,100-150元。

861:45-50MHz,晶控式,FM工作方式,输出功率0。3W,100元以下,体积很小。

至于常见的小八一,硅二瓦,709,705,714,862等背负电台,因为性能和频段以及工作方式不太适合目前的火腿使用,购买价值已经不大,除非收藏用。

b。进口二手短波设备:

可以选用常见进口二手机有:

建伍KENWOOD TS-520S/X,TS-530S,TS-830S或八重洲YAESU的FT-101/B/E,FT-101ZD,FT-102:末级是电子管的,有些还覆盖10MHz,24MHz等WARC波段, 较后期的型号还有数字频率显示,是频率计方式,它们不是PLL频率合成或不完全是频率合成的。此类机器应该可以满足我们绝大多数HAM的要求。 缺点是:电子管存在老化问题,有些管子如6JS6(FT-101/B/E的末级功放管),在国内基本搞不到。国外虽有卖的,但一对管子的价格和机器本身的价格差不多,购买的意义已经不大。还有,机器需要预热,开机要等几分钟后可变频率本机振荡器 (VFO)才能稳定下来,不过一旦稳定,频率就不再飘移了,其稳定性也不比频率合成的近期机种差多少。它们一般价位在600-900,内部一般含有电源。电路类似的但末级功放为全晶体管有Kenwood的TS-120/130/180和Yaesu的FT-107/DM,价位在1300-1800。 有些FT-107系列有内置电源和频率记忆功能

上一档的机器是YAESU的FT-80C(国外叫FT-747,FT-80C为国内组装),这种机器对于多数的ham是足够用的,该有的功能都有,缺点是需要另加FM调频板。当然如果你不玩10mFM,那么不加也罢。它的价位在1500-1800。如果你再多出一点(1900-2300),买ICOM的IC-721/725/735;YAESU FT-757GX/GXII; KENWOOOD的TS-140也可以,它们的功能比FT-80C要多一些,外观也更漂亮些,IC-721/725在国外的评价不错,噪声较低。缺点也是没有调频板,而且不容易买到。 它是最早的直接频率合成(DDS)机种之一。FT-757有一些小问题,如频率易漂移/故障率高等,它是以VXO即可变晶体振荡器的方式来实现的最小10Hz调谐步进,稳定性略差。类似的,IC-735也存在这个问题,但程度不如FT-757严重。IC-735是ICOM二手机器中比较可靠的机器,虽性能一般,但它是一种比较实用的机器,该有的功能包括一些较高档机上的PBT(中频可变带宽),NOTCH(带阻滤波器)的功能都有,对于消除干扰很有用。也是一种物美价廉非常实用的机器,值得推荐。

再上一档就是ICOM的IC-751/751A和KENWOOD的TS-440了, 这两种机器都不错,IC751/A有内置电源,TS-440还带有内置天调。个人感觉还是751A要好一些,在那个年代的二手机里,它的选择性极为出色,是ICOM过去生产的一款少见的优秀机种。它们的价位一般在3000-3600元。当然它没有内置天调。751的故障率稍高,而且751/751A的锂电池一旦没电,整个机器就要死掉,国内修复不易。所以要严格注意机内的锂电池,注意千万不要掉电,换电池要带电更换,否则就死定了。类似的问题在在ICOM的R-71A/E接收机上也存在。IC-751/751A听感上感觉要比它贵几百块钱的Kenwood TS-450要好,虽然它的功能要比450要少。IC-751A的缺点是相位噪声大一些。TS-440S也是一种十分经典的机器,十分可靠,它的末极可以在100%的负载率下输出100W,这在业余机里十分少见。有资料说它的输出功率是200W,这是不对的,它的原文资料是说它的末级直流输入功率是200W,在美国出售的机器常用这种标注方法。国内有一本发行量很大的图集错误地把它的末极输入功率标成了输出功率,这样就造成了以讹传讹,使人误以为TS-440S的输出功率是200W。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|天地中社区 ( 赣ICP备15001126号 )

GMT+8, 2024-12-23 00:42 , Processed in 0.020454 second(s), 14 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表